Table of Contents

Foreword to the First Edition.
Foreword to the Third Edition.
Preface.
Acknowledgments.

1. HEATING, COOLING, AND LIGHTING AS FORM-GIVERS IN ARCHITECTURE.
 1.1 Introduction.
 1.2 Vernacular and Regional Architecture.
 1.3 Formal Architecture.
 1.4 The Architectural Approach.
 1.5 Dynamic versus Static Buildings.
 1.6 Passive Survivability.
 1.7 Energy and Architecture.
 1.8 Architecture and Heating, Cooling, and Lightning.
 1.9 Conclusion.

2. SUSTAINABLE DESIGN.
 2.1 Easter Island: Learning from the Past.
 2.2 Sustainable Design.
 2.3 Reuse, Recycle, and Regenerate by Design.
 2.4 The Green Movement.
 2.5 Population and Sustainability.
 2.6 Growth.
 2.7 Exponential Growth.
 2.8 The Amoeba Analogy.
 2.9 Supply versus Efficiency.
 2.10 Sustainable-Design Issues.
 2.11 Climate Change.
 2.13 The Ozone Hole.
 2.14 Efficiency.
 2.15 Energy Sources.
 2.16 Ancient Greece: A Historical Example.
 2.17 Nonrenewable Energy Sources.
 2.18 Renewable Energy Sources.
2.19 Hydrogen.
2.20 Conclusion.

3. **BASIC PRINCIPLES.**

3.1 Introduction.
3.2 Heat.
3.3 Sensible Heat.
3.4 Latent Heat.
3.5 Evaporative Cooling.
3.6 Convection.
3.7 Transport.
3.8 Energy-Transfer Mediums.
3.9 Radiation.
3.10 Greenhouse Effect.
3.11 Equilibrium Temperature of a Surface.
3.12 Mean Radiant Temperature.
3.14 Heat Sink.
3.15 Heat Capacity.
3.16 Thermal Resistance.
3.17 Heat-Flow Coefficient.
3.18 Time Lag.
3.20 Energy Conversion.
3.21 Combined Heat and Power.
3.22 Fuel Cells.
3.23 Embodied Energy.
3.24 Conclusion.

4. **THERMAL COMFORT.**

4.1 Biological Machine.
4.2 Thermal Barriers.
4.3 Metabolic Rate.
4.4 Thermal Conditions of the Environment.
4.5 The Psychometric chart.
4.6 Dew Point and Wet-Bulb Temperatures.
4.7 Heat Content of Air.
4.8 Thermal Comfort.
4.9 Shifting of the Comfort Zone.
4.10 Clothing and Comfort.
4.11 Strategies.
4.12 Conclusion.

5. CLIMATE.
5.1 Introduction.
5.2 Climate.
5.3 Microclimate.
5.4 Climatic Anomalies.
5.5 Climate Regions of the United States.
5.6 Explanations of the Climatic Data Tables.
5.7 Additional Climate Information.
5.8 Climate Information for Other Countries.
Climate Data Tables.
5.9 Design Strategies.

6. SOLAR GEOMETRY.
6.1 Introduction.
6.2 The Sun.
6.3 Elliptical Orbit.
6.4 Tilt of the Earth???s Axis.
6.5 Consequences of the Altitude Angle.
6.6 Winter.
6.7 The Sun Revolves Around the Earth!
6.8 Sky Dome.
6.9 Determining Altitude and Azimuth Angles.
6.10 Solar Time.
6.11 Horizontal Sun-Path Diagrams.
6.12 Vertical Sun-Path Diagrams.
6.13 Sun-Path Models.
6.15 Heliodons.
6.16 Sundials for Model Testing.
6.17 Conceptually Clear Heliodons.
6.18 Conclusion.

7. PASSIVE SOLAR.
7.1 History.
7.2 Solar in America.
7.3 Solar Hemicycle.
7.4 Latest Rediscovery of Passive Solar.
7.5 Passive Solar.
7.6 Direct-Gain Systems.
7.7 Design Guidelines for Direct-Gain Systems.
7.8 Example.
7.9 Trombe Wall Systems.
7.11 Examples.
7.12 Suspaces.
7.13 Balcomb House.
7.15 Comparison of the Three Main Passive Heating Systems.
7.16 General Considerations for Passive Solar Systems.
7.17 Heat-Storage Materials.
7.18 Other Passive Heating Systems.
7.19 Conclusion.

8. PHOTOVOLTAICS AND ACTIVE SOLAR.

8.1 Introduction.
8.2 The Almost Ideal Energy Source.
8.3 History of PV.
8.4 The PV Cell.
8.5 Types of PV Systems.
8.6 Balance of System Equipment.
8.7 Building-Integrated Photovoltaics.
8.8 Orientation and Tilt.
8.9 Roofs Clad with PV.
8.10 Facades Clad with PV.
8.11 Glazing and PV.
8.12 PV Shading Devices.
8.13 PV: Part of the Second Tier.
8.14 Sizing a PV System.
8.15 Finding the PV Array Size for a Stand-Alone Building by the Short Calculation Method.
8.16 Design Guidelines.
8.17 The Promise of PV.
8.18 The Cost Effectiveness of PV and Active Solar Applications.
8.19 Active Solar Swimming-Pool Heating.
8.21 Solar Hot-Air Collectors.
8.22 Designing an Active Solar System.
8.23 Active/Passive Solar Systems.
8.24 Preheating of Ventilation Air.
9. SHADING AND LIGHT COLORS.

9.1 History of Shading.

9.2 Shading.

9.3 Fixed Exterior Shading Devices.

9.4 Movable Shading Devices.

9.5 Shading Periods of the Year.

9.6 Horizontal Overhangs.

9.7 Design of Horizontal Overhangs—Basic Method.

9.8 Shading Design for South Windows.

9.9 Design Guidelines for Fixed South Overhangs.

9.10 Design Guidelines for Movable South Overhangs.

9.11 Shading for East and West Windows.

9.12 Design of East and West Horizontal Overhangs.

9.16 Special Shading Strategies.

9.17 Shading Outdoor Spaces.

9.19 Glazing as the Shading Element.

9.20 Interior Shading Devices.

9.21 Shading Coefficient and Solar Heat-Gain Coefficient.

9.22 Reflection from Roofs and Walls.

9.23 Conclusion.

10. PASSIVE COOLING.

10.1 Introduction to Cooling.

10.2 Historical and Indigenous Use of Passive Cooling.

10.3 Passive Cooling Systems.

10.4 Comfort Ventilation versus Night-Flush Cooling.

10.5 Basic Principles of Air Flow.

10.6 Air Flow Through Buildings.

10.7 Example of Ventilation Design.

10.8 Comfort Ventilation.

10.9 Night-Flush Cooling.

10.10 Smart Facades and Roofs.

10.11 Radiant Cooling.

10.12 Evaporative Cooling.

10.13 Cool Towers.
10.14 Earth Cooling.
10.15 Dehumidification with a Desiccant.
10.16 Conclusion.

11. SITE DESIGN, COMMUNITY PLANNING, AND LANDSCAPING.

11.1 Introduction.
11.2 Site Selection.
11.3 Solar Access.
11.4 Shadow Patterns.
11.5 Site Planning.
11.6 Solar Zoning.
11.7 Physical Models.
11.8 Wind and Site Design.
11.9 Plants and Vegetation.
11.10 Green Roofs.
11.11 Lawns.
11.12 Landscaping.
11.13 Community Design.
11.14 Cooling Our Communities.
11.15 Conclusion.

12. LIGHTING.

12.1 Introduction.
12.2 Light.
12.3 Reflectance/Transmittance.
12.4 Color.
12.5 Vision.
12.6 Perception.
12.7 Performance of a Visual Task.
12.8 Characteristics of the Visual Task.
12.9 Illumination Level.
12.10 Brightness Ratios.
12.11 Glare.
12.12 Equivalent Spherical Illumination.
12.13 Activity Needs.
12.14 Biological Needs.
12.15 Light and Health.
12.16 The Poetry of Light.
12.17 Rules for Lighting Design.
12.18 Career Possibilities.
12.19 Conclusion.
13. DAYLIGHTING.

13.1 History of Daylighting.
13.2 Why Daylighting?
13.3 The Nature of Daylight.
13.4 Conceptual Model.
13.5 Illumination and the Daylight Factor.
13.6 Light without Heat?
13.7 Cool Daylight.
13.8 Goals of Daylighting.
13.9 Basic Daylighting Strategies.
13.10 Basic Windows Strategies.
13.11 Advanced Windows Strategies.
13.13 Top Lighting.
13.15 Clerestories, Monitors, and Light Scoops.
13.16 Special Daylighting Techniques.
13.17 Translucent Walls and Roofs.
13.18 Electric Lighting as a Supplement to Daylighting.
13.19 Physical Modeling.
13.20 Guidelines for Daylighting.
13.21 Conclusion.

14. ELECTRIC LIGHTING.

14.1 History of Light Sources.
14.2 Light Sources.
14.3 Incandescent and Halogen Lamps.
14.4 Discharge Lamps.
14.5 Fluorescent Lamps.
14.6 High Intensity Discharge Lamps (Mercury, Metal Halide, and High Pressure Sodium).
14.7 Comparison of the Major Lighting Sources.
14.8 Solid State Lighting.
14.9 Luminaires.
14.10 Lenses, Diffusers, and Baffles.
14.11 Lighting Systems.
14.15 Outdoor Lighting.
14.16 Emergency Lighting.
14.17 Controls.
14.18 Maintenance.
14.20 Conclusion.

15. THE THERMAL ENVELOPE: KEEPING WARM AND STAYING COOL.

15.1 Background.
15.2 Heat Loss.
15.3 Heat Gain.
15.4 Solar Reflectivity (Albedo).
15.5 Compactness, Exposed Area, and Thermal Planning.
15.6 Insulation Materials.
15.7 The Thermal Envelope.
15.8 Heat Bridges.
15.9 Windows.
15.10 Movable Insulation.
15.11 Insulating Effect from Thermal Mass.
15.12 Earth Sheltering.
15.13 Infiltration and Ventilation.
15.14 Moisture Control.
15.15 Radon.
15.16 Appliances.
15.17 Conclusion.

16. MECHANICAL EQUIPMENT FOR HEATING AND COOLING.

16.1 Introduction.
16.2 Heating.
16.3 Thermal Zones.
16.4 Heating Systems.
16.5 Electric Heating.
16.6 Hot-Water (Hydronic) Heating.
16.7 Hot-Air Systems.
16.8 Cooling.
16.9 Refrigeration Cycles.
16.10 Heat Pumps.
16.11 Geo-Exchange.
16.12 Cooling Systems.
16.13 Air Conditioning for Small Buildings.
16.14 Air Conditioning for Large Multistory Buildings.
16.16 Air Supply (Ducts and Diffusers).
16.17 Ventilation.
16.19 Air Filtration and Odor Removal.
16.20 Special Systems.
16.21 Integrated and Exposed Mechanical Equipment.
16.22 Conclusion.

17. CASE STUDIES.
17.1 Introduction.
17.2 The Real Goods Solar Living Center.
17.3 The Urban Villa.
17.4 The Emerald People’s Utility District Headquarters.
17.5 Colorado Mountain College.
17.6 Gregory Bateson Building.
17.7 Commerzbank.
17.8 Phoenix Central Library.

Appendix A: Horizontal Sun-Path Diagrams.
Appendix B: Vertical Sun-Path Diagrams.
Appendix C: Solar Altitude and Azimuth Angles.
Appendix D: Methods for Estimating the Height of Trees, Buildings, etc.
Appendix E: Sundials.
Appendix F: Sun-Path Models.
Appendix G: Computer Software Useful for the Schematic Design Stage.
Appendix H: Site Evaluation Tools.
Appendix I: Heliodons.
Appendix J: Educational Opportunities in Energy-Conscious Design.
Appendix K: Resources.