Green Corrosion Inhibitors: Theory and Practice

Sastri, Vedula S.

Table of Contents

Preface.

1 Introduction and Forms of Corrosion.
 1.1 Definition.
 1.2 Developments in Corrosion Science.
 1.3 Development of Some Corrosion-Related Phenomena.
 1.4 Economics of Corrosion.
 1.5 Safety and Environmental Considerations.
 1.6 Forms of Corrosion.
 1.6.1 General Corrosion.
 1.6.2 Galvanic Corrosion.
 1.6.3 Crevice Corrosion.
 1.6.4 Pitting Corrosion.
 1.6.5 Dealloying or Selective Leaching.
 1.6.6 Intergranular Corrosion.
 1.6.7 Cavitation Damage.
 1.6.8 Fretting Corrosion.
 1.6.9 Corrosion Fatigue.
 1.6.10 Stress-Corrosion Cracking.
 1.7 Corrosion Inhibition.

References.

2 Electrochemical Principles and Corrosion Monitoring.
 2.1 Thermodynamic Basis.
 2.2 Nature of Corrosion Reactions.
 2.3 Standard Electrode Potentials.
 2.4 Pourbaix Diagrams.
 2.5 Dynamic Electrochemical Processes.
 2.6 Monitoring Corrosion and Effectiveness of Corrosion Inhibitors.
 2.6.1 Objectives of Corrosion Monitoring.
 2.6.2 Corrosion Monitoring Probe Location.
 2.6.3 Probe Type and its Selection.
 2.6.4 Direct Intrusive Corrosion Monitoring Techniques.
 2.6.4.1 Physical Techniques.
 2.6.4.2 Electrical Resistance.
2.6.3 Inductive Resistance Probes (22).
2.6.4 Electrochemical Techniques.
2.6.5 Linear Polarization Resistance.
2.6.6 Zero-Resistance Ammetry.
2.6.7 Potentiodynamic–Galvanodynamic Polarization.
2.6.8 Electrochemical Noise.
2.6.9 Electrochemical Impedance Spectroscopy.
2.6.10 Harmonic Distortion Analysis.
2.6.5 Direct Nonintrusive Techniques.
2.6.1 Ultrasonics.
2.6.2 Magnetic Flux Leakage.
2.6.3 Eddy Current Technique.
2.6.4 Remote Field Eddy Current Technique.
2.6.5 Radiography.
2.6.6 Thin-Layer Activation and Gamma Radiography.
2.6.7 Electrical Field Mapping.
2.6.6 Indirect On-Line Measurement Techniques.
2.6.1 Hydrogen Monitoring.
2.6.2 Corrosion Potential.
2.6.3 On-Line Water Chemistry Parameters.
2.6.3.1 pH.
2.6.3.2 Conductivity.
2.6.3.3 Dissolved Oxygen.
2.6.3.4 Oxidation–Reduction Potential.
2.6.7 Fluid Detection.
2.6.7.1 Flow Regime.
2.6.7.2 Flow Velocity.
2.6.7.3 Process Parameters.
2.6.7.4 Pressure.
2.6.7.5 Temperature.
2.6.7.6 Dew Point.
2.6.7.7 Fouling.
2.6.8 Indirect Off-Line Measurement Techniques.
2.6.8.1 Off-Line Water Chemistry Parameters.
2.6.8.1.1 Alkalinity.
2.6.8.1.2 Metal Ion Analysis.
2.6.8.1.3 Concentration of Dissolved Solids.
2.6.8.1.4 Gas Analysis.
2.6.8.1.5 Residual Oxidant.
2.6.8.1.6 Microbiological Analysis.
2.6.8.1.7 Residual Inhibitor.
2.6.8.1.8 Filming Corrosion Inhibitor Residual.
2.6.8.1.9 Reactant Corrosion Inhibitor Residual.
2.6.8.1.10 Chemical Analysis of Process Samples.
2.6.8.1.11 Sulfur Content.
2.6.8.1.12 Total Acid Number.
2.6.8.1.13 Nitrogen Content.
2.6.8.1.14 Salt Content of Crude Oil.

References.

3 Adsorption in Corrosion Inhibition.
3.1 Adsorption of Inhibitor at the Metal Surface.
3.2 Corrosion Inhibitors.
3.3 Adsorption Isotherms.
3.4 Anodic Dissolution and Adsorption.
3.4.1 Formation of Passive Films.
3.5 Role of Oxyanions (Passivation) in Corrosion Inhibition.
3.6 Inhibition of Localized Corrosion.
3.7 Adsorption of Halide Ions.
3.8 Influence of Environmental Factors.
3.9 Adsorption Interactions.
3.10 Passivation of Metals.
3.11 Inhibition of Localized Corrosion.

References.

4 Corrosion Inhibition: Theory and Practice.
4.1 Factors Pertaining to Metal Samples.
4.1.1 Sample Preparation.
4.1.2 Environmental Factors.
4.1.3 Concentration of Inhibitor.
4.1.4 Process Conditions.
4.2 Inhibitors in Use.
4.3 Cooling Systems.
4.4 Processing with Acid Solutions.
4.5 Corrosion Problems in the Oil Industry.
4.6 Corrosion Inhibition of Reinforcing Steel in Concrete.
4.7 Corrosion Inhibition in Coal–Water Slurry Pipelines.
4.8 Corrosion Inhibition in the Mining Industry.
4.9 Atmospheric Corrosion Inhibition.
5 Corrosion Inhibition Mechanisms.

5.1 Interface Corrosion Inhibition.

5.2 Structure of the Inhibitor.

5.2.1 Stability Constants of Zinc–Triazole Complexes (15).

5.3 Structure–Activity Relationships.

5.4 Quantum Chemical Considerations.

5.4.1 Application of Hard and Soft Acid and Base Principle in Corrosion Inhibition.

5.5 Inhibitor Field Theory of Corrosion Inhibition.

5.6 Application to Typical Metal–Inhibitor Systems.

5.7 Photochemical Corrosion Inhibition.

5.8 Influence of Inhibitors on Corrosion Reactions in Acid Media.

5.9 Corrosion Inhibition in Neutral Solutions.

5.10 Corrosion Inhibition of Iron: Interphase and Intraphase Inhibition.

5.11 Passive Oxide Films.

5.12 Interaction of Anions with Oxide Films.

References.

6 Industrial Applications of Corrosion Inhibition.

6.1 Corrosion Inhibition of Reinforcing Steel in Concrete.

6.2 Corrosion Inhibition in Coal-Water Slurries.

6.3 Corrosion Inhibition in Cooling Water Systems.

6.4 Molybdate Inhibitor in Corrosion Inhibition.

6.5 Corrosion Inhibition in Acid Solutions.

6.5.1 Acid Pickling.

6.6 Oxygen Scavengers.

6.7 Inhibition of Corrosion by Organic Coatings.

6.8 Mechanism of Protection by Tannins.

6.9 Corrosion Inhibition of Titanium and Zirconium in Acid Media.

6.10 Corrosion Resistance of Several Metals and Alloys.

References.

7 Environmentally Friendly Corrosion Inhibitors.

7.1 Standardized Environmental Testing.

7.2 Summary of PARCOM Guidelines.

7.2.1 Toxicity: As Measured on Full Formulation.

7.2.2 Biodegradation.

7.2.3 Partition Coefficient.

7.2.4 Toxicity Testing.

7.3 Macrocyclic Compounds in Corrosion Inhibition.

7.4 Environmentally Green Inhibitors.
7.5 Role of Rare Earth Compounds in Replacing Chromate Inhibitors.

7.6 Oleochemicals as Corrosion Inhibitors.

7.7 Hybrid Coatings and Corrosion Inhibitors.

7.8 Barbiturates as Green Corrosion Inhibitors.

7.9 Corrosion Prevention of Copper Using Ultrathin Organic Monolayers.

7.10 Corrosion of Titanium Biomaterials.

7.11 Corrosion Control in the Electronics Industry.

References.

Index.