Table of Contents

List of Symbols.

1 Introduction.

Learning Objectives.
1.1 Historical Perspective.
1.2 Materials Science and Engineering.
1.3 Why Study Materials Science and Engineering?
1.4 Classification of Materials.
1.5 Advanced Materials.
1.6 Modern Materials' Needs.
1.7 Processing/Structure/Properties/Performance Correlations.

Summary.

References.

Question.

2 Atomic Structure and Interatomic Bonding.

Learning Objectives.
2.1 Introduction.

Atomic Structure.
2.2 Fundamental Concepts.
2.3 Electrons in Atoms.
2.4 The Periodic Table.

Atomic Bonding in Solids.
2.5 Bonding Forces and Energies.
2.6 Primary Interatomic Bonds.
2.7 Secondary Bonding or van der Waals Bonding.
2.8 Molecules.

Summary.

Equation Summary.
Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

3 The Structure of Crystalline Solids.

Learning Objectives.
3.1 Introduction.

Crystal Structures.
3.2 Fundamental Concepts.
3.3 Unit Cells.
3.4 Metallic Crystal Structures.
3.5 Density Computations.
3.6 Polymorphism and Allotropy.
3.7 Crystal Systems.

Crystallographic Points, Directions, and Planes.
3.8 Point Coordinates.
3.9 Crystallographic Directions.
3.10 Crystallographic Planes.
3.11 Linear and Planar Densities.
3.12 Close-Packed Crystal Structures.

Crystalline and Noncrystalline Materials.
3.13 Single Crystals.
3.14 Polycrystalline Materials.
3.15 Anisotropy.
3.17 Noncrystalline Solids.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

4 Imperfections in Solids.
Learning Objectives.
4.1 Introduction.

Point Defects.
4.2 Vacancies and Self-Interstitials.
4.3 Impurities in Solids.
4.4 Specification of Composition.

Miscellaneous Imperfections.
4.5 Dislocation–Linear Defects.
4.6 Interfacial Defects.
4.7 Bulk or Volume Defects.
4.8 Atomic Vibrations.
Microscopic Examination.

4.9 Basic Concepts of Microscopy.
4.10 Microscopic Techniques.
4.11 Grain Size Determination.

Summary.

Equation Summary.
Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

Design Problems.

5 Diffusion.

Learning Objectives.

5.1 Introduction.
5.2 Diffusion Mechanism.
5.3 Steady-State Diffusion.
5.4 Nonsteady-State Diffusion.
5.5 Factors That Influence Diffusion.
5.6 Diffusion in Semiconducting Materials.
5.7 Other Diffusion Paths.

Summary.

Equation Summary.
Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

Design Problems.

6 Mechanical Properties of Metals.

Learning Objectives.

6.1 Introduction.
6.2 Concepts of Stress and Strain.

Elastic Deformation.

6.3 Stress-Strain Behavior.
6.4 Anelasticity.
6.5 Elastic Properties of Materials.

Plastic Deformation.

6.6 Tensile Properties.
6.7 True Stress and Strain.
6.8 Elastic Recovery After Plastic Deformation.
6.9 Compressive, Shear, and Torsional Deformations.

6.10 Hardness.

Property Variability and Design/Safety Factors.

6.11 Variability of Material Properties.

6.12 Design/Safety Factors.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

Design Problems.

7 Dislocations and Strengthening Mechanisms.

Learning Objectives.

7.1 Introduction.

Dislocations and Plastic Deformation.

7.2 Basic Concepts.

7.3 Characteristics of Dislocations.

7.4 Slip Systems.

7.5 Slip in Single Crystals.

7.6 Plastic Deformation of Polycrystalline Materials.

7.7 Deformation by Twinning.

Mechanism of Strengthening in Metals.

7.8 Strengthening by grain Size Reduction.

7.9 Solid-Solution Strengthening.

7.10 Strain Hardening.

Recovery, Recrystallization, and Grain Growth.

7.11 Recovery.

7.12 Recrystallization.

7.13 Grain Growth.

Summary.

Equation Summary.

8 Failure.

Learning Objectives.

8.1 Introduction.

Fracture.

8.2 Fundamentals of Fracture.

8.3 Ductile Fracture.

8.4 Brittle Fracture.
8.5 Principles of Fracture Mechanics.
8.6 Fracture Toughness Testing.

Fatigue.
8.7 Cyclic Stresses.
8.8 The S–N Curve.
8.9 Crack Initiation and Propagation.
8.10 Factors That Affect Fatigue Life.
8.11 Environmental Effects.

Creep.
8.12 Generalized Creep Behavior.
8.13 Stress and Temperature Effects.
8.14 Data Extrapolation Methods.
8.15 alloys for High-Temperature Use.

Summary.
Equation Summary.
Processing/Structure/Properties/Performance Summary.
Important Terms and Concepts.
References.
Questions and Problems.

9 Phase Diagrams.
Learning Objectives.
9.1 Introduction.

Definitions and Basic Concepts.
9.2 Solubility Limit.
9.3 Phases.
9.4 Microstructure.
9.5 Phase Equilibria.
9.6 One-Component (or Unary) Phase Diagrams.

Binary Phase Diagrams.
9.7 Binary Isomorphous Systems.
9.8 Interpretation of Phase Diagrams.
9.9 Development of Microstructure in Isomorphous Alloys.
9.10 Mechanical Properties of Isomorphous Alloys.
9.11 Binary Eutectic Systems.
9.15 Congruent Phase Transformations.
9.16 Ceramic and Ternary Phase Diagrams.

The Iron–Carbon System.
9.18 The Iron–Iron Carbide (Fe–Fe₃C) Phase Diagram.
9.20 The Influence of Other Alloying Elements.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

10 Phase Transformations in Metals: Development of Microstructure and Alteration of Mechanical Properties.

Learning Objectives.

10.1 Introduction.

10.2 Basic Concepts.

10.3 The Kinetics of Phase Transformations.

10.4 Metastable Versus Equilibrium States.

10.5 Isothermal Transformation Diagrams.

10.6 Continuous Cooling Transformation Diagrams.

10.7 Mechanical Behavior of Iron–Carbon Alloys.

10.8 Tempered Martensite.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

Design Problems.

11 Applications and Processing of Metal Alloys.

Learning Objectives.

11.1 Introduction.

Types of Metal Alloys.

11.2 Ferrous Alloys.

11.3 Nonferrous Alloys.

Fabrication of Metals.

11.4 Forming Operations.
11.5 Casting.
11.6 Miscellaneous Techniques.

Thermal Processing of Metals.
11.7 Annealing Processes.
11.8 Heat Treatment of Steels.
11.9 Precipitation Hardening.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

Design Problems.

12 Structures and Properties of Ceramics.

Learning Objectives.

12.1 Introduction.

Ceramic Structures.

12.2 Crystal Structures.
12.3 Silicate Ceramics.
12.4 Carbon.
12.5 Imperfections in Ceramics.
12.6 Diffusion in Ionic Materials.
12.7 Ceramic Phase Diagrams.

Mechanical Properties.

12.8 Brittle Fracture of Ceramics.
12.9 Stress–Strain Behavior.
12.10 Mechanisms of Plastic.
12.11 Miscellaneous Mechanical Considerations.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

Design Problems.

13 Applications and Processing of Ceramics.

Learning Objectives.

13.1 Introduction.
Types and Applications of Ceramics.

13.2 Glasses.
13.3 Glass-Ceramics.
13.4 Clay Products.
13.5 Refractories.
13.6 Abrasives.
13.7 Cements.
13.8 Advanced Ceramics.

Fabrication and Processing of Ceramics.

13.9 Fabrication and Processing of Glasses and Glass-Ceramics.
13.10 Fabrication and Processing of Clay Products.
13.11 Powder Pressing.
13.12 Tape Casting.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

Design Problem.

14 Polymer Structures.

Learning Objectives.

14.1 Introduction.
14.2 Hydrocarbon Molecules.
14.3 Polymer Molecules.
14.4 The Chemistry of Polymer Molecules.
14.5 Molecular Weight.
14.6 Molecular Shape.
14.7 Molecular Structure.
14.8 Molecular Configurations.
14.9 Thermoplastic and Thermosetting Polymers.
14.10 Copolymers.
14.11 Polymer Crystallinity.
14.12 Polymer Crystals.
14.13 Defects in Polymers.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.
Questions and Problems.

16 Composites.

Learning Objectives.

16.1 Introduction.

Particle-Reinforced Composites.

16.2 Large-Particle Composites.
16.3 Dispersion-Strengthened Composites.

Fiber-Reinforced Composites.

16.4 Influence of Fiber Length.
16.5 Influence of Fiber Orientation and Concentration.

16.6 The Fiber Phase.
16.7 The Matrix Phase.

16.8 Polymer-Matrix Composites.

16.9 Metal-Matrix Composites.

16.10 Ceramic-Matrix Composites.

16.11 Carbon–Carbon Composites.

16.12 Hybrid Composites.

16.13 Processing of fiber-Reinforced Composites.

Structural Composites

16.14 Laminar Composites.

16.15 Sandwich Panels.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

Design Problems.

17 Corrosion and Degradation of Materials.

Learning Objectives.

17.1 Introduction.

Corrosion of Metals.

17.2 Electrochemical Considerations.

17.3 Corrosion Rates.

17.4 Prediction for Corrosion Rates.

17.5 Passivity.

17.6 Environmental Effects.
Corrosion of Ceramic Materials.

Degradation of Polymers.

17.11 Swelling and Dissolution.
17.12 Bond Rupture.
17.13 Weathering.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

Design Problems.

18 Electrical Properties.

Learning Objectives.

18.1 Introduction.

Electrical Conduction.

18.2 Ohm's Law.
18.3 Electrical Conductivity.
18.4 Electronic and Ionic Conduction.
18.5 Energy Band Structures in Solids.
18.6 Conduction in Terms of Band and Atomic Bonding Models.
18.7 Electron Mobility.
18.8 Electrical Resistivity of Metals.
18.9 Electrical Characteristics of Commercial Alloys.

Semiconductivity.

18.10 Intrinsic Semiconduction.
18.11 Extrinsic Semiconduction.
18.12 The Temperature Dependence of Carrier Concentration.
18.13 Factors That Affect Carrier Mobility.
18.14 The Hall Effect
18.15 Semiconductor Devices.

Electrical Conduction in Ionic Ceramics and in Polymers.

18.16 Conduction in Ionic Materials.
18.17 Electrical Properties of Polymers.

Dielectric Behavior.
18.18 Capacitance.
18.19 Field Vectors and Polarization.
18.20 Types of Polarization.
18.21 Frequency Dependence of the Dielectric Constant.
18.22 Dielectric Strength.
18.23 Dielectric Materials.

Other Electrical Characteristics of Materials.

18.24 Ferroelectricity.
18.25 Piezoelectricity.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

Design Problems.

19 Thermal Properties.

Learning Objectives.

19.1 Introduction.

19.2 Heat Capacity.

19.3 Thermal Expansion.

19.4 Thermal Conductivity.

19.5 Thermal Stresses.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

Design Problems.

20 Magnetic Properties.

Learning Objectives.

20.1 Introduction.

20.2 Basic Concepts.

20.3 Diamagnetism and Paramagnetic.

20.4 Ferromagnetism.

20.5 Antiferromagnetism and Ferrimagnetism.

20.6 The Influence of Temperature on Magnetic Behavior.

20.7 Domains and Hysteresis.
20.8 Magnetic Anisotropy.
20.9 Soft Magnetic Materials.
20.11 Magnetic Storage.
20.12 Superconductivity.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

Design Problems.

21 Optical Properties.

Learning Objectives.

21.1 Introduction.

21.2 Electromagnetic Radiation.

21.3 Light Interactions with Solids.

21.4 Atomic and Electronic Interactions.

21.5 Refraction.

21.6 Reflection.

21.7 Absorption.

21.8 Transmission.

21.9 Color.

21.10 Opacity and Translucency in Insulators.

21.11 Luminescence.

21.12 Photoconductivity.

21.13 Lasers.

Summary.

Equation Summary.

Processing/Structure/Properties/Performance Summary.

Important Terms and Concepts.

References.

Questions and Problems.

Design Problem.

22 Economic, Environmental, and Societal Issues in Materials Science and Engineering.

Learning Objectives.

22.1 Introduction.
22.2 Component Design.

22.3 Materials.

22.4 Manufacturing Techniques.

22.5 Recycling Issues in Materials Science and Engineering.

Summary.

References.

Design Questions.

Appendix A The International System of Units (SI).

B.1 Density.

B.2 Modulus of Elasticity.

B.3 Poisson's Ratio.

B.4 Strength and Ductility.

B.5 Plane Strain Fracture Toughness.

B.6 Linear Coefficient of Thermal Expansion.

B.7 Thermal Conductivity.

B.8 Specific Heat.

B.9 Electrical Resistivity.

B.10 Metal Alloy Compositions.

Appendix D Repeat Unit Structures for Common Polymers.

Appendix E Glass Transition and Melting Temperatures for Common Polymeric Materials.

Mechanical Engineering Online Support Module.

Glossary.

Answers to Selected Problems.

Index.