High-Yield Cell and Molecular Biology

Dudek, Ronald W. PhD

ISBN-13: 9780781768870

Table of Contents

The Cell Membrane: Eicosanoids and Receptors/Signal Transduction

I. The Lipid Component of the Cell Membrane

II. The Protein Component of the Cell Membrane

III. Membrane Transport Proteins

V. G-Protein-Linked Receptors

V. Types of G-Protein-Linked Receptors

VI. Enzyme-Linked Receptors

VII. Low-Density Lipoprotein (LDL) Receptor

VIII. Summary Table

Cytoplasm and Organelles

I. Cytoplasm

II. Ribosomes

III. Rough Endoplasmic Reticulum

IV. Golgi Complex

V. Smooth Endoplasmic Reticulum (sER)

VI. Mitochondria

VII. Lysosomes

VIII. Peroxisomes

IX. Cytoskeleton

X. Cell Inclusions

XI. Selected Photomicrographs

Nucleus

I. Nuclear Envelope

II. Apoptosis

III. Nucleolus

V. Assembly of the Ribosome

Protein Synthesis

I. General Features

II. Transcription

III. Processing the RNA Transcript into MRNA

W. Translation

V. Clinical Considerations

Chromosomal DNA

I. The Biochemistry of Nucleic Acids

II. Levels of DNA Packaging

III. Centromere

V. Heterochromatin and Euchromatin

V. Studying Human Chromosomes

VI. Staining of Chromosomes

VII. Chromosome Morphology

Numerical Chromosomal Anomalies

I. Polyploidy

II. Mixoploidy

III. Aneuploidy

IV. Selected Photographs

Structural Chromosomal Abnormalities

I. Deletions

II. Microdeletions

III. Translocations

IV. Unstable Expanding Repeat Mutations (Dynamic Mutations)

V. Isochromosomes

VI. Inversions

VII. Breakage

Chromosome Replication and DNA Synthesis

- I. General Features
- II. The Replication Process
- III. The Telomere
- IV. Types of DNA Damage and DNA Repair
- V. Summary of DNA Replication Machinery

Meiosis and Genetic Recombination

- I. Meiosis
- II. Oogenesis: Female Gametogenesis
- III. Spermatogenesis: Male Gametogenesis
- IV. Genetic Recombination

The Human Nuclear Genome

- I. General Features
- II. Protein-Coding Genes
- III. RNA-Coding Genes
- V. Epigenetic Control
- V. Non-Coding DNA

The Human Mitochondrial Genome

- I. General Features
- II. Protein-Coding Genes
- III. RNA-Coding Genes
- V. Other Mitochondrial Proteins
- V. Mitochondrial Diseases

Control of Gene Expression

- I. General Features
- II. Mechanism of Gene Expression
- III. The Structure of Transcription Factors, Gene Regulatory Proteins, and Other Trans-Acting Factors
- W. Clinical Considerations
- V. Other Mechanisms of Gene Expression
- VI. The lac Operon
- VII. The trp Operon

Mutations of the DNA Sequence

- I. General Features
- II. Silent (Synonymous) Mutations
- III. Non-Silent (Nonsynonymous) Mutations
- IV. Loss of Function and Gain of Function Mutations
- V. Other Types of Polymorphisms

Proto-Oncogenes, Oncogenes, and Tumor-Suppressor Genes

- I. Definitions
- II. Designations
- III. Proto-Oncogenes and Oncogenes
- IV. Tumor Suppressor Genes
- V. Molecular Pathology of Colorectal Cancer

The Cell Cycle

- I. Phases of the Cell Cycle
- II. Control of the Cell Cycle
- III. Stages of the M (Mitosis) Phase

Molecular Biology of Cancer

- I. The Causes of Cancer
- II. The Six Superpowers of a Cancer Cell

Homeotic Genes and Anterior/Posterior Body Pattern Formation

- I. Introduction
- II. Human Homeotic Genes

The Human Mitochondrial Genome