Table of Contents

Bloodstain Pattern Analysis: Its Function and a Historical Perspective
The Function of Bloodstain Pattern Analysis
Historical Perspective of Bloodstain Pattern Evidence
Early Scientific References
Modern Works in Bloodstain Pattern Analysis

Bloodstain Pattern Terminology
Referring to the Discipline
General Terms Relating to Bloodstain Pattern Analysis
Angle of Impact
(Arterial) Spurt/Gush
Atomized Blood/Misting
Blood into Blood Patterns
Blowback Effect
Capillary Action
Cast-Off Patterns
Clot
Contact Stain
Directionality
Directional Angle
Drip/Drip Trail
Expectorate Spatter/Blood
Flow
Fly Spot
Impact Site
Non-Spatter Stains
Origin/Area of Origin
Parent Stain
Pattern Transfer
Primary Stain
Ricochet Stain
Satellite Stain/Spatter
Saturation Stain
Shadowing/Ghosting/Void
Skeletonized Stain/Skeletonization
Smear
Spatter Stains
Spines
Swipe
Wipe

Bloodstain Classification
Classification vs. Overall Opinion
Classification vs. Definition
Why a Taxonomic Classification System?
A Taxonomic Classification System for Bloodstains
The Spatter Family
Category: Spatter
Category: Linear Spatter
Category: Spurt
Category: Cast-Off
Category: Drip/Trail
Category: Non-Linear Spatter
Category: Impact Pattern
Category: Expectorate Spatter
Category: Drips
The Non-Spatter Family
Category: Non-Spatter
Category: Irregular Margin
Category: Gush/Splash
A Methodology for Bloodstain Pattern Analysis

Scientific Method
A Practical Methodology for Applying Scientific Method
Step 1: Become Familiar with the Entire Scene
Step 2: Identify Discrete Patterns
Step 3: Classify the Patterns
Step 4: Evaluate Aspects of Directionality and Motion for the Pattern
Step 5: Evaluate Point of Convergence and Area of Origin
Step 6: Evaluate Interrelationships among Patterns and Other Evidence
Step 7: Evaluate Viable Source Events in an Effort to Explain the Pattern
Step 8: Define a Best Explanation Given the Data

Applying the Methodology in Different Environments
Active Scenes
Released Scenes
Cold Case Scenes

The Medium of Blood
Spatter Droplet Dynamics
Spatter Drop Dynamics on Impact
Contact/Collapse
Displacement
Dispersion
Retraction
Liquid-to-Liquid Impacts
Blood Behavior When Exposed to Different Mechanisms
Blood Dispersed through the Air as a Function of Gravity
Blood Dispersed from a Point Source
Blood Ejected from an Object in Motion
Blood Ejected in Volume under Pressure
Blood That Accumulates and/or Flows on a Surface
Blood Deposited through Transfer

Anatomical Considerations in Bloodstain Pattern Analysis, M. Ferenc
Introduction
Blood Cells and Plasma
Coagulation and Hemostasis
The Circulatory System and Shock
Non-Traumatic Causes of Bleeding
Traumatic Pathology
Firearm Injuries
Sharp Force Injuries
Blunt Injuries
The Forensic Pathologist as a Resource

Determining Motion and Directionality
General Sequence of Events
Droplet Directionality
Recognizing Blood Trail Motion
Determining Motion from Wipes and Swipes
Repetitive Pattern Transfers
Flows

Determining the Point of Convergence and the Area of Origin
Identify Well-Formed Stains in the Pattern
Identify Directionality of the Stains
Identify Point of Convergence for the Pattern
Identify Impact Angles for the Stains
Stain Measurement
Combine the Information to Establish an Area of Origin
Graphing Points of Origin
Defining Area of Origin with the Tangent Function
Three-Dimensional Evaluations of Area of Origin
Stringing Scenes
Forensic Software Applications
How Many Stains Are Enough?
Automation Efficiency or Precision An Important Distinction
Limitations in Area of Origin Evaluations

Evaluating Impact Spatter Bloodstains
Methods of Description
Understanding the Concept of Preponderant Stain Size
Impact Droplet Size
Pattern Configuration and Dispersion in Impacts
Spatter Resulting from Gunshots
Gunshot Spatter Å¾, â€” Forward Spatter and Back Spatter
Size Ranges of Gunshot Spatter
Kinetic Energy, Wound Cavitation, and the Creation of Gunshot Spatter
Double Shot Impact Events
Gunshot Pattern Shapes and Dispersion
Expectorate Blood
Fly Spots

Understanding and Applying Characteristic Patterns of Blood
Impact Patterns
Cast-Off Stains
Projected Blood Å¾, â€” Spurt and Gush Patterns
Expectorate Patterns
Drips and Drip Trails
Pattern Transfers
Flow Patterns
Pools
Wipes, Swipes, and Contact
Blood into Blood
Altered Stains
Voids
Clotting
Drying Time of Blood
Dilution

Bloodstained Clothing Issues
Applying Good Clothing Documentation Procedures
Overcoming Poor Collection/Documentation Procedures
Distinguishing Contact from Spatter on Fabric
Directionality and Impact Angle Issues on Fabric
Pattern Transfer Issues
Clothing Documentation

Presumptive Testing and Enhancement of Blood, C. Marie
Presumptive Tests
Benzidines
Triarylmethanes
Luminol
Choosing a Reagent
Genetic Testing Considerations
Formulations
Hemastix Å¾, â€” Procedure
Hemastix Å¾, â€” Procedure
Preparing Phenolphthalein, Leucomalachite Green, and o-Tolidine
Phenolphthalein Solution
Leucomalachite Green Solution
o-Tolidine Solution
Testing Procedure Using Phenolphthalein, Leucomalachite Green, and the o-Tolidine Solutions
Interpretation
Searching for and Enhancing Latent Blood
Leucocrystal Violet (LCV) Preparation
Alternate LCV Reagent Preparation Method
Fluorescin Spraying Solution Preparation
Fluorescin in Alcohol Preparation
Fluorescin in Water Preparation
Luminol
Reagent Preparation
Alternate Reagent Preparation
Safety Considerations
Procedure for Using Luminol, LCV, and Fluorescin
Protein Stains
Photo-Documentation
Interpretation
Confirmation of Blood
Immunooassay Confirmation of Blood

**Documenting Bloodstains**

The Function of Documentation
Collection
Bloodstain Pattern Photography
Scene and Pattern Sketches
Written Reports
A Spatter Pattern Description/Conclusion
A Blood Pool Description/Conclusion
A Pattern Transfer Description/Conclusion
A Complex Pattern Description/Conclusion

**An Introduction to Crime Scene Reconstruction and Analysis**
Crime Scene Analysis and the Archeologist’s Dilemma
A History of Crime Scene Analysis
The Correlation of Crime Scene Analysis to Behavioral Analysis
The Application of Scientific Method in the Reconstruction Process
Theory and Principles of Crime Scene Analysis
Locard’s Principle of Exchange
Nicolas Steno’s Principle of Superposition
Nicolas Steno’s Principle of Lateral Continuity
Chronology
A Methodology for Crime Scene Analysis’s Event Analysis
Putting the Pieces Together

**Presenting Evidence**
Understanding the Nature and Content of Daubert or Similar Challenges
*Frye v. United States*, 293 F. 1013 (D.C. Cir. 1923)
U.S. Federal Rule 702
Responding to Daubert or Similar Challenges

What Is Bloodstain Pattern Analysis?
What Is the Purpose of a Bloodstain Pattern Analysis?
What Principles Apply to Bloodstain Pattern Analysis?
What Is the Methodology Used in Bloodstain Pattern Analysis?
Where Has Blood Pattern Analysis Been Accepted in Judicial Settings and within the Scientific Community?
What Scientific Studies Have Been Published in Peer Review Journals?
Are There Professional Associations That Recognize Bloodstain Pattern Analysis?
Is There an Identified Error Rate for Bloodstain Pattern Analysis?

General Concerns for Testifying
Maintaining Objectivity
Settling in and Establishing a First Impression
Understanding Cross-Examination
Using Demonstrative Aids in Court
Building Demonstrative Presentations Using Computer Resources
Bloodstain Pattern Analysis Software Applications

**Experimentation in Bloodstain Pattern Analysis**
Considerations for the Design and Conduct of Experiments in Bloodstain Pattern Analysis
Identify the Investigative Question
Initial Observation and Information Gathering
Identify Variables and Form a Hypothesis
Design a Functional Experiment to Test Your Hypothesis
Obtain Materials and Equipment
Conduct the Experiment and Record the Data
Analyze and Summarize Results
State the Best Explanation
Maintaining a Reality Check, Comparing against the Crime Scene

Experimental Errors
Pitfalls to Experimentation and Reconstruction Attempts
Case Example 1: Painted Fibers
Case Experiment 2: An Odd Impact Spatter
Case Experiment 3: Spatter or No Spatter
Experiments vs. Demonstrations

**Dealing with the Risk of Bloodborne Pathogens**
Bloodborne Diseases
Crime Scene Considerations