Table of Contents

Foreword.

1. Importance of hip fractures. The intact femoral neck.

1.1. Introduction

1.2. Definition and incidence of hip fractures

1.2.1. Nomenclature, basic terms

1.2.2. Incidence of fractures–national and international data

1.2.3. Incidence of femoral neck fractures at the National Institute of Traumatology between 1940-2000

1.3. Regional and surgical anatomy

1.4. Relationship between osteoporosis, age sex and hip fractures

1.5. Certain biomechanical characteristics of the proximal femur


1.6.1. Anatomy of the arterial blood supply of the femoral neck region

1.6.2. Anatomy of the venous blood supply of the femoral neck region

1.6.3. Capillary circulation of the femoral head and neck

2. Pathology of femoral neck fracture

2.1. General aspects of pathology

2.2. Stress fracture and spontaneous fracture

2.3. Pathological fracture of the femoral neck

2.4. Damage of the blood supply

2.5. Intracapsular drainage – venous blood flow through the fracture gap. (Significance of venous drainage from the femoral head, screw designed for promoting venous blood flow)

2.6. Types of femoral neck fractures

2.7. Fracture classification: Pauwels, Garden and AO Årå–Åstern classifications

2.8. Non-displaced (Garden Type I–II.) femoral neck fracture

3. Diagnostics

3.1. Clinical examination

3.1.1. History

3.1.2. Inspection

3.1.3. Palpation

3.1.4. Functional examination

3.2. Radiological examination, special imaging techniques

3.2.1. Conventional x-ray investigations
3.2.1.1. Typical x-ray view in two planes

3.2.1.2. Additional conventional x-ray examinations

3.2.2. Special imaging techniques

3.2.2.1. Conventional tomography

3.2.2.2. MRI (Magnetic Resonance Imaging)

3.2.2.3. Scintigraphy

3.2.2.4. SPECT (Single Photon Emission Computer Tomography)

3.2.2.5. Investigation of the blood supply of the femoral head (intraosseous venography)

3.2.2.6. DSA (Dynamic Subtraction Angiography)

3.2.2.7. Sonographic investigation

3.2.2.8. CT (Computer Tomography)

3.2.2.9. DLR (Digital Luminescent Radiography)

3.2.2.10. LDF (Laser Doppler Flowmetry)

3.2.2.11. RSA (Roentgen Stereophotogrammetric Analysis)

3.3. Investigation of the blood supply of the femoral head (intraosseous venography)

3.3.1. Brief description of the technique

3.3.2. Indication of intraosseous venography

3.4. Diagnostic difficulties (recommendations for prevention and avoidance of mistakes)

4. Historical review

4.1. Brief history of the management of the femoral neck fracture

4.1.1. First attempts

4.1.2. Development of osteosynthesis

4.1.3. Evolution of joint replacement techniques

4.1.4. First steps in the operative treatment of femoral neck fractures in Hungary

4.2. Development of osteosynthesis of the femoral neck fractures at the National Institute of Traumatology

4.2.1. Development of nailing techniques

4.2.2. Summary of the principles of management based on 40 years experience

4.2.3. Development and application of screw fixation techniques for the femoral neck fracture at our Institute until 1990

4.2.4. Introduction of percutaneous fixation of femoral neck fractures with two cannulated screws

5. Biomechanical aspects of fixation with cannulated screw - research and developments

5.1. Introduction. Significance of the three point fixation

5.2. Reinforcement of the 1st point of fixation and improvement of fixation in the femoral head

5.2.1. Problems of fixation in the femoral head

5.2.2. Modifications in thread characteristics for improvement of fixation

5.2.3. Comparison of pull-out tests of screws with different thread quality and thread diameter

5.2.4. Tensile strength of cannulated screw with the use of palacos injected into the femoral head through the cannule

5.2.5. Evaluation of investigations
5.2.6. Investigation of rotational stability with the use of a plate placed on the screw

5.2.7. Improvement of fixation with the use of three screws

5.2.8. Improvement of fixation in the femoral head Åkä, o-clínic examples

5.3.2. Improvement of stability with the use of a small plate securing both screws

5.3.3. Improvement of stability in Pauwels Type III fractures with the combination of screws with different thread length

5.3.4. Securing angular stability in case of deficient Adam-arc, with the use of dynamic collo-diaphyseal (DCD) plate

5.4. Reinforcement of the 3rd point of fixation - the lateral cortex.

5.4.1. Problems with the stability of the 3rd point of fixation - varus or rotational redisplacement

5.4.2. Thickening of the lateral cortex in cases, where the small plate had not been attached to the distal screw

5.4.3. Experimental investigation of the small plate

5.4.4. Relevant points in the correct use of the small plate

5.4.5. Clinical examples for the stabilising effect of the small plate

5.5. Significance of the rotational displacement and its prevention

5.6. Sliding effect Åkä, o-clínic "useful" sliding of screws. Apposition of fragments with shortening of the femoral neck

6. Timing of operation, principle of emergency, anaesthesia

6.1. Principle of emergency in the management of femoral neck fractures

6.2. Use of the principle of emergency in the routine of trauma services in Hungary

6.3. Summary of our investigations on the timing of femoral neck fixation

6.4. Conditions of emergency operation

6.5. Our evidence based management principles

6.6. General condition of the old patients, associated diseases

7. Significance of reduction

7.1. Introduction

7.2. Reduction of displaced femoral neck fracture

7.3. Open reduction of femoral neck fracture

7.4. Reduction of Garden I. fracture impacted in hypervalgus

7.5. Common errors in fracture reduction

7.6. Guidelines for the evaluation of reduction

8. Technique of osteosynthesis

8.1. Preoperative preparation

8.1.1. Preparation for urgent (within 6 hours) osteosynthesis

8.1.2. Technique of local anaesthesia

8.1.3. Preparation of delayed osteosynthesis Åkä, o-clínic use of skeletal traction
8.1.4. Algorithm for the management of femoral neck fractures

8.2. Implants and instruments for cannulated screw fixation

8.2.1. Implants for cannulated screw fixation

8.2.2. Instruments for cannulated screw fixation

8.3. Technique of percutaneous screw fixation

8.3.1. Introduction

8.3.2. Detailed technique of percutaneous screw fixation

8.3.2.1. Positioning, prepping, draping

8.3.2.2. Site of skin incision, exposure and point of entry of the drill

8.3.2.3. Eight main steps of the operation

8.3.3. Common technical errors and their prevention

8.4. Guidelines for the evaluation of osteosynthesis

8.5. Cannulated screw fixation with exposure

8.6. Techniques for enhancement of stability of osteosynthesis

8.6.1. Introduction

8.6.2. Use of screws with 5,5mm thread diameter

8.6.3. Use of screw and plate

8.6.4. Use of three cannulated screws

8.6.5. Plate fixed to both screws

8.6.6. Use of DCD plates and attachments

9. Management of non-displaced (Garden Type I-II.) and atypical fractures of the femoral neck

9.1. Management of non-displaced (Garden I-II.) femoral neck fractures

9.1.1. Introduction

9.1.2. Management of non-displaced (Garden I-II) fractures at our Institute

9.1.3. Our results with the osteosynthesis of Garden I-II. fractures

9.2. Femoral neck fractures in adults between 20-50 years

9.3. Femoral neck fractures in children and adolescents

9.4. Management of stress fracture of the femoral neck

9.5. Management of pathological fracture of the femoral neck

9.5.1. Pathological fracture caused by a cyst

9.5.2. Compression fracture in osteomalacia (adult rickets)

9.5.3. Femoral neck fracture in osteopetrosis (Albers-Schönberg disease)

9.5.4. Femoral neck fracture in osteosclerisis

9.5.5. Femoral neck fracture after poliomyelitis

9.5.6. Femoral neck fracture in osteopetrosis imperfecta

9.5.7. Femoral neck fracture as a result of primary or metastatic tumour

10.1. Problems and management in the early postoperative period

10.1.1. Immediate postoperative period

10.1.2. Early general complications, their prevention and management

10.1.2.1. Cardiovascular complications

10.1.2.2. Neurological complications

10.1.2.3. Other general complications

10.2. Early complications in the wound

10.2.1. Haematoma

10.2.1.1. Clinical presentation and diagnostics of postoperative haematoma

10.2.1.2. Treatment of postoperative haematoma

10.2.2. Infection

10.2.2.1. Clinical presentation and diagnostics of superficial and intraarticular infection

10.2.2.2. Treatment of infection

10.3. Mobilisation, weight bearing, follow-up, aftercare

10.4. Mechanical complications following cannulated screw fixation and their management

10.4.1. Redisplacement

10.4.2. Loosening of implants

10.4.3. Fracture of the femur after femoral neck fracture fixed with implants

11. Results of treatment

11.1. Introduction

11.2. Comparison of cannulated screw fixation and Smith-Petersen nailing

11.3. Value of the score for evaluation of the quality of reduction and osteosynthesis

11.4. Analysis of the causes of redisplacement

11.4.1. Role of the quality of reduction and osteosynthesis

11.4.2. Role of the fracture type in redisplacement

11.4.2.1. Garden's classification

11.4.2.2. Pauwels classification

11.4.2.3. Quality of fracture surfaces

11.4.3. Relationship between age (osteoporosis) and redisplacement

11.4.4. Experiences with the use of the small plate

11.5. Comparison of the results of cannulated screw fixations made between 1993-94 and 1997-98

11.6. Management of femoral neck fractures - osteosynthesis or endoprosthesis?

Appendix

Glossary of the terms used in this book, with reference to femoral neck fracture

References

List of authors