Preface.

List of Contributors.

1 Method Development and Optimization of Enantioseparations Using Macro cyclic Glycopeptide Chiral Stationary Phases (Thomas E. Beesley and J.T. Lee).

1.1 Introduction.
1.2 Structural Characteristics of Macro cyclic Glycopeptide CSPs.
1.3 Enantioselectivity as a Function of Molecular Recognition.
1.4 Complementary Effects.
1.5 Method Development.
1.6 Optimization Procedures.
1.7 Amino Acid and Peptide Analysis.
1.8 Conclusion.

Acknowledgments.

References.

2 Role of Polysaccharides in Chiral Separations by Liquid Chromatography and Capillary Electrophoresis (Imran Ali and Hassan Y. Aboul-Enein).

2.1 Introduction.
2.2 Structures of Polysaccharide Chiral Selectors.
2.3 Properties of Polysaccharide CSPs.
2.4 Applications.
2.5 Optimization of Chiral Separations.
2.6 Chiral Recognition Mechanisms.
2.7 Chiral Separation by Sub- and Supercritical Fluid Chromatography.
2.8 Chiral Separation by Capillary Electrophoresis.
2.9 Chiral Separation by Thin-layer Chromatography.
2.10 Chiral Separation by Capillary Electrophoresis.
2.11 Conclusion.

References.

3 Analytical and Preparative Potential of Immobilized Polysaccharide-derived Chiral Stationary Phases (Tong Zhang and Pilar Franco).

3.1 Introduction.
3.2 Scope of Immobilized Polysaccharide-derived CSPs.
3.3 Beneficial Characteristics of Immobilized Polysaccharide-derived CSPs.
3.4 Method Development on Immobilized Polysaccharide-derived CSPs.
3.5 Regeneration of Immobilized CSPs – Why, How and When.

3.6 Conclusions and Perspectives.

References.

4 Chiral Separations Using Supercritical Fluid Chromatography (*Karen W. Phinney and Rodger W. Stringham*).

4.1 Introduction.
4.2 Overview of SFC.
4.3 Chiral Stationary Phases in SFC.
4.4 Mobile Phase Effects in SFC.
4.5 Preparative-scale Separations.

References.

5 Chiral Separation by Ligand Exchange (*Gerald Gübitz and Martin G. Schmid*).

5.1 Introduction.
5.2 Chiral Ligand-exchange Chromatography.
5.3 Complexation Gas Chromatography.
5.4 LE-Electromigration Techniques.

List of Abbreviations.

References.

6 Advances in Simulated Moving Bed Chromatographic Separations (*Pedro Sá Gomes, Mirjana Minceva, Luis S. Pais, and Alirio E. Rodrigues*).

6.1 Introduction.
6.2 Modeling Strategies.
6.3 Simulation.
6.4 Novel SMB Configurations.
6.5 Improvements in Operation Conditions Evaluation (Separation Volume Method).
6.6 Conclusions.

References.

7 Less Common Applications of Enantioselective HPLC Using the SMB Technology in the Pharmaceutical Industry (*Stefanie Abel and Markus Juza*).

7.1 Introduction – From an Emerging Technology to a Classical Unit Operation.
7.2 Unbalanced Separations and Multi-component Separations Using SMB.
7.3 Unusual Isotherms and Adsorption Behavior.
7.4 Applications of Various Column Configurations.
7.5 Application of Solvent Gradients.
7.6 Chemistry and Racemization.
7.7 Future Developments.
7.8 Conclusion.

Notation.

Greek Letters.

Subscripts.
Acknowledgments.

References.

8 Enantiomer Separation by Chiral Crown Ether Stationary Phases (Myung Ho Hyun).

8.1 Introduction.
8.2 Development of CSPs.
8.3 Applications of CSPs.
8.4 Composition of Mobile Phase.
8.5 Temperature Effect.
8.6 Conclusion.

Acknowledgment.

References.

9 Enantioselective Separation of Amino Acids and Hydroxy Acids by Ligand Exchange with Copper(II) Complexes in HPLC (Chiral Eluent) and in Fast Sensing Systems (Rosangela Marchelli, Roberto Corradini, Gianni Galaverna, Arnaldo Dossena, Francesco Dallavalle, and Stefano Sforza).

9.1 Introduction.
9.2 Enantiomeric Separation of Amino Acids and Hydroxy Acids with the Chiral Selectors Added to the Mobile Phase in HPLC (CMPs).
9.3 Dynamically Coated Stationary Phases.
9.4 Comparison Between Enantiomeric Separations Obtained with the Chiral Selector Bound to the Stationary Phase or Added to the Eluent.
9.5 Mixed Inclusion–Ligand-exchange Chromatography.

Acknowledgment.

References.

10 Enantiomer Separation by Capillary Electrophoresis (Gerhard K. E. Scriba).

10.1 Introduction.
10.2 Modes of Capillary Electromigration Techniques.
10.3 Theory of Electrophoretic Separations.
10.4 Enantiomer Separations.
10.5 Applications.
10.6 Method Development and Validation.
10.7 Migration Models.
10.8 Enantiomer Migration Order.
10.9 Future Trends.

References.

11 Counter-current Chromatography in the Separation of Enantiomers (Eva Pérez and Cristina Minguillón).

11.1 Introduction.
11.2 Instrumentation.
11.3 Some Thoughts on CCC Enantioseparation.
11.4 Chiral Selectors Used in CCC Enantioseparations.
11.5 pH-zone-refining CCC.
11.6 Sample Resolution in CCC.
11.7 Continuous CPC.
11.8 Conclusions and Future Trends.
Acknowledgments.
References.

12 Separation of Enantiomers Using Molecularly Imprinted Polymers (Börje Sellergren).
12.1 Introduction.
12.2 Fundamental Studies Using Enantiomers as Model Templates.
12.3 Using Frontal Analysis to Elucidate Retention Mechanisms.
12.4 Approaches to Binding Site Design.
12.5 Other Formats: Beads, Monoliths, and Films.
12.6 Other Matrices for Imprinting of Enantiomers.
12.7 Conclusions.
References.

13 Enantioselective Biosensors (Raluca-Ioana Stefan-van Staden, Jacobus Frederick van Staden, and Hassan Y. Aboul-Enein).
13.1 Introduction.
13.2 The Design of Enantioselective Electrochemical Biosensors.
13.3 Applications of Enantioselective Analysis.
13.4 Conclusion.
References.

14 Chiral Analysis in Capillary Electrochromatography (CEC) and CEC Coupled to Mass Spectrometry (Jie Zheng and Shahab A. Shamsi).
14.1 Introduction.
14.2 CEC Column Technologies for Chiral Separation.
14.3 Chiral Stationary Phases for CEC.
14.4 Chiral CEC Coupled to Mass Spectrometric Detection.
14.5 Conclusions.
List of Abbreviations.
References.

15 Chiral Analysis Using Polymeric Surfactants in Micellar Electrokinetic Chromatography (MEKC) and MEKC Coupled to Mass Spectrometry (Syed A. A. Rizvi and Shahab A. Shamsi).
15.1 Introduction.
15.2 Chiral Anionic Surfactants.
15.3 Chiral Cationic Surfactants.
15.4 Coupling of MEKC to Mass Spectrometry Using Polymeric Surfactants.
15.5 Conclusions.
Acknowledgment.
List of Abbreviations.


References.

16 Polarimeter Chiral Detectors in Enantioseparations (Gary W. Yanik).

16.1 Introduction.
16.2 Theory of Operation.
16.3 Comparison with UV and CD Detection.
16.4 Useful Definitions.
16.5 Automation of Method Development and Preparative Purifications.
16.6 Method Development.
16.7 Preparative Purifications.
16.8 Analytes.
16.9 Applications.
16.10 Summary and Conclusion.

References.

17 Preparative Chiral Chromatography – a Powerful and Efficient Tool in Drug Discovery (Shalini Andersson).

17.1 Introduction.
17.2 Chiral Chromatographic Resolution of Enantiomers.
17.3 Chiral Preparative Chromatography Process.
17.4 Examples of Preparative Separation of Enantiomers.
17.5 Analysis and Chiroptical Characterization of the Isolated Enantiomers.
17.6 Conclusions.

References.

Subject Index.